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The electromagnetic lower-hybrid drift instability �LHDI� in the intermediate-wavelength regime ky
��i�e

�1, where ky and �e,i are the wave vector and the electron and ion gyroradii, respectively, in a thin plasma
sheet containing electrons and H+ and O+ ions is examined using kinetic theory. It is shown that the growth rate
of the LHDI first decreases and then increases with increase in the O+ content and temperature, with a
minimum at a moderate level of the latter. The results can be relevant to understanding magnetic reconnection
in the presence of LHDI.
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I. INTRODUCTION

It is well-known that the presence of impurity species in
plasma can lead to new phenomena as well as modify known
ones, such as new waves and instabilities, minority-ion heat-
ing, heavy-ion acceleration, modified magnetic reconnection,
etc. �1–16�. Observations showed that O+ ions are often
present in plasma sheets �6,7,10–13�, so that magnetic recon-
nection in plasmas containing O+ ions has attracted consid-
erable attention �4,5,14�. The lower-hybrid drift instability
�LHDI� has often been invoked as a source for anomalous
resistivity in magnetic reconnection and related phenomena
�15–27�. The electrostatic LHDI was first considered by
Krall and Liewer �20�, and the resulting anomalous resistiv-
ity by Gladd and Davidson �23�. Daughton �18� found that
the mode structure of the LHDI can have a significant elec-
tromagnetic component localized in the center region of the
sheet, where electromagnetic fluctuations can potentially af-
fect magnetic reconnection. Recently, Wang et al. �27� con-
sidered obliquely propagating LHD waves and found that the
perpendicular propagating modes are responsible for enhanc-
ing the anomalous resistivity.

In this paper, we consider the effect of O+ ions on the
linear LHDI in a current sheet using a Vlasov-Maxwell ki-
netic model including magnetic field perturbations. The orbit
integrals are treated numerically and the corresponding ei-
genvalue problem consisting of coupled integrodifferential
equations is solved by using a finite-element representation
of the eigenfunction �18,28–30�. It is found that the depen-
dence of the growth rate of the fastest growing mode on the
O+ content and temperature is not monotonic.

In Sec. II, the self-consistent Vlasov steady-state of a
three-species neutral sheet is obtained, and in Sec. III the
dispersion relation of the LHDI considered. In Sec. IV, the
corresponding numerical results are presented. The results
are discussed in Sec. V.

II. STEADY-STATE HARRIS SHEET WITH THREE
SPECIES OF PARTICLES

We consider a Harris equilibrium �16�, where the mag-
netic field given by B� z�x�=B0 tanh�x /L�e�z, where L is the

half thickness of the sheet, and there is no electric field �E� 0
=0�. The plasma is assumed to be in local thermodynamic
equilibrium �16�, with the particle distribution functions sat-
isfying the local Maxwellian

f0s =
ns

�3/2vts
3 exp�−

vx
2 + �vy − Us�2 + vz

2

vts
2 � , �1�

where ns�x�=	dv� f0s=n0s sech2�x /L� is the density, Us

= 
vys�= 1
ns

	−�
� vyf0s�x ,v��dv� is the transverse fluid velocity,

vts=�Ts /ms is the thermal speed, and Ts=
ms

3 
�v� −Ue�y�2�
=

ms

3ns
	−�

� �v� −Ue�y�2f0s�x ,v��dv� is the temperature of the species
s= i ,e ,O+ �protons, electrons, and O+ ions�. The integrals in
Us, Ts, and ns lead to x-dependent expressions of the same
forms, so that Us and Ts �thus also vts� are constants �16�.
Because of the charge neutrality condition 
sqsns=0, where
qs is the charge, one has en0i−en0e+qO+n0O+ =0, and
−Ui /Ti=−Ue /Te=qO+UO+ /eTO+ �30�. Steady-state pressure
balance also leads to B0

2=8��Tin0i+Ten0e+TO+n0O+� �16�.
The Harris current sheet in a three-species plasma here is an
exact solution to the steady-state Vlasov-Maxwell equations.

III. DISPERSION RELATION

We now investigate nonlocal linear LHDI in the Harris
current sheet using a finite-element representation of the
eigenfunction in the corresponding eigenvalue problem con-
sisting of a set of integrodifferential equations �18,28�. The
linearized Vlasov equation is

� f1s

�t
+ v� · �f1s +

v� � B� 0

c
· �vf1s

= −
qs

ms
�E� 1 +

v� � B� 1

c
� · �vf0s, �2�

where f0s is given by Eq. �1� and f1s is the perturbed distri-
bution function and E� 1 and B� 1 are the perturbed electric and
magnetic fields. We can write E� 1 and B� 1 in terms of the
scalar and vector potentials as
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E� 1 = − ��1 −
1

c

�A� 1

�t
and B� 1 = � � A� 1. �3�

The perturbation quantities are assumed to have a Fourier
representation in the y direction

Q1 = Q̃�x�exp�− i�t + ikyy� , �4�

where � and ky correspond to the wave frequency and wave
vector, respectively. Integrating along the unperturbed par-
ticle orbits, we obtain the perturbed distribution function

f1s = −
qsf0s

Ts
��̃�x� −

Us

c
Ãy�x� − i�� − kyUs�S� , �5�

where S=	−�
0 � 1

c A�̃ �x�� ·v��− �̃�x���exp�−i��+ iky�y�−y��d�,
and x����, y����, and v����� are determined by the particle
trajectories in the Harris sheet. The initial �at �=0� condi-
tions are x�=x, y�=y, and v��=v� . From Eq. �5�, one can ob-
tain the perturbed charge and current densities

�̃ = 

s
�qs

2ns

Ts
��̃ −

Us

c
Ãy� − i

qs
2�� − kyus�

Ts
� f0sSdv�� ,

�6�

J�̃ = 

s
�qs

2nsUs

Ts
��̃ −

Us

c
Ãy� − i

qs
2�� − kyus�

Ts
� f0sv�Sdv�� ,

�7�

respectively.
A charged particle in the Harris sheet has three constants

of motion, namely, the z-direction momentum pzs=msvz, the
total y-direction momentum pys=msvy +qsAy /c, and the total
energy Hs= 1

2ms�vx
2+vy

2+vz
2�, where Ay =	Bz�x�dx is the vec-

tor potential and c is the speed of light in vacuum. Thus, the
x component of the equation of motion can be written as

ms
dvx

dt
= −

1

2ms

�

�x
�pys −

qsAys�x�
c

�2

, �8�

from which we can see that the particle can be trapped in the
x direction by a potential well and bounce with the speed

vx=�v�
2 − �

pys

ms
−

qsAy�x�
cms

�2 between two turning points where
vx=0. That is, the particle orbit is periodic in x�, vx�, and vy�
�=pys /ms−qsAy�x�� /msc�, with the period tp determined by
the initial conditions �18,28�. In the z direction, we have the
free-flight trajectory given by vz�=vz and z�=z+vz�. The pe-
riod of the particle orbit is given by tp=2	x1

x2vx
−1�x�dx, where

x1 and x2 are the two turning points where vx=0. The y
component y���� of the trajectory is not periodic. However, it
has the property y���+ntp�=n�y+y����, where n is an posi-
tive integer and �y=	−tp

0 vy����d� is a net drift during one
period of the motion. Using this relation and the x-direction
periodicity, one obtains

S̃ �
1

1 − exp�i�tp + iky�y��−tp

0 �1

c
Ã�x�� · v�� − �̃�x���

�exp�− i�� + ik� · �y� − y��d� , �9�

which can be readily integrated. The equations are completed
by the Maxwell’s equations

�2�1 −
1

c2

�2�1

�t2 = − 4��1,

�2A� 1 −
1

c2

�2A�

�t2 = − 4�J�1, �10�

where �1 and J�1 are given by Eqs. �6� and �7�, respectively,
and the Lorentz gauge has been used.

The integrodifferential Eq. �10� can be solved numerically
by first constructing a basis set of functions that satisfy the
boundary conditions �18,28�. Accordingly, the perturbation

potentials �̃�x� and A�̃ �x� are expanded in terms of a series of
basis functions as follows:

�̃�x� = 

n=1

N

Cn	n�x�, Ãx�x� = 

n=1

N

CN+n	n�x� ,

Ãy�x� = 

n=1

N

C2N+n	n�x�, Ãz�x� = 

n=1

N

C3N+n	n�x� ,

where 	n�x� are the basis functions, and Cj are the corre-
sponding coefficients. The serial indexing of Cj has been
chosen for numerical convenience. For simplicity, the basis
functions 	n�x� are taken to be pyramid functions �29�

	n�x� =�
x − xn−1

xn − xn−1
, if xn−1 
 x 
 xn

xn+1 − x

xn+1 − xn
, if xn 
 x 
 xn+1

0, otherwise
� �11�

for �x��Lmax, and 	1�x�=exp�−��x−x1�� for �x�
Lmax, where
Lmax is chosen such that the solutions are consistent with the
Harris sheet boundaries. Here �= �ky

2−�2 /c2�1/2, and 	n�x�
satisfy the boundary condition that the field perturbations
vanish at infinity. Inserting these basis functions into the field
equation �10�, one obtains

MijCj = 0, �12�

where the elements of the 4N�4N matrix Mij are computed
from the inner product between the N basis functions and the
field potentials. The inner product between 	n�x� and g�x� is
defined by 
	n �g�=	−�

� 	n�x�g�x�dx. Nontrivial solutions to
Eq. �12� exist if

det�Mij� = 0, �13�

which is the general dispersion relation for linear LHD
waves in the inhomogeneous plasma of the Harris sheet. It
determines the complex eigenvalues, or the frequency �, in
terms of the wave vector ky. In the following, we shall solve
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Eq. �13� numerically for the complex frequency � for fixed
ky, and obtain the corresponding eigenfunctions that deter-
mine the mode structure.

IV. NUMERICAL RESULTS

We now investigate the effect of the O+ ions on the LHDI
in the current sheet numerically. For simplicity, we adopt the

normalization x�=x /L, t�= t /�ci, A�̃ �=A�̃ /A0, and �̃�

=c�̃ /A0vti, where A0=−B0L is the characteristic scale of the
vector potential and �cs=qsB0 /msc is the gyrofrequency of
particles in the asymptotic field B0. In the numerical calcu-
lation, the mass ratio is mi /me=1836 and the other param-
eters are �i /L=2, Ui /vti=2, Ti=Te=5 keV, and Lmax=5L,
where �i=vti /�ci is the ion gyroradius.

A. Unstable LHD modes

For fixed ky, Eq. �13� has different solutions correspond-
ing to LHD modes with different frequencies and different

x-direction structures. These modes are analogous to the har-
monic modes in a homogeneous plasma, except that here the
mode frequencies need not be harmonics of the fundamental
frequency. Nevertheless, we can label each mode by a mode
number m, and sort m in terms of the magnitude of the real
frequency of the corresponding mode. In Fig. 1, the struc-
tures of several unstable modes of both even- and odd-
parities are shown for nO+ /ne=0.1, TO+ /Te=1, and kyL=2.0
�corresponding to ky

��i�e�0.84�. For clarity, we have pre-
sented only several typical LHD modes with electromagnetic

�in particular, Ãy �0� components, including the one �m=4�
having the maximum growth rate. The real and imaginary

parts of Ãy are denoted by the solid and dashed curves, re-
spectively. The frequency � as a function of the mode num-
ber m is given in Fig. 2, from which one can see that al-
though they do not have the largest amplitude, the odd and
even m=4 modes have the largest growth rates. Clearly, it
should be of interest to investigate the evolution of the

(b)(a)

FIG. 1. The vector potential Ay of eight even- and odd-parity eigenmodes for kyL=2.0, nO+ /ne=0.1, and TO+ =Te. The solid and dashed
curves denote the real and imaginary parts, respectively, of Ay.
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system to see which mode eventually dominates. However,
this task is beyond the limitations of the present linear ap-
proach.

B. Typical mode structure in the plasma sheet

The scalar and vector potentials for the fastest growing
odd-parity M =4 mode are shown in Fig. 3. The growth rate
and real frequency for this mode are Im��� /�ci=0.41 and
Re��� /�ci=5.73, respectively. One can see that the mode is

antisymmetric in Ãy and �̃, but symmetric in Ãx. The z com-

ponent Ãz ��10−18� remains small across the sheet, and the
gauge condition is satisfied.

C. Effect of O+ on the growth rate

We shall now focus mainly on the effects of the O+ ions
on the most unstable eigenmodes. In Fig. 4, the growth rate
of the most unstable eigenmodes for kyL=2.0 and TO+ /Te

=1 is shown. We note that the growth rate of both the odd-

and even-parity modes is not monotonic with respect to the
O+ content: it first decreases with increasing nO+ /ne, then
increases for nO+ /ne
0.2.

When the O+ ions dominate the plasma sheet, the growth
rate of the LHDI in the current sheet can be considerably
higher than that in a plasma without O+ ions. The latter can
dominate a plasma sheet during magnetic substorms and re-
connections �31,32�. When the O+ concentration is low, the
energy transfer is mainly between the H+ ions and the LHD
waves. As the O+ content increases, energy transfer between
the O+ ions and the LHD waves also increases and eventu-
ally exceeds that of the H+ ions. At a certain O+ content, the
total energy transfer by Landau damping between the LHD
waves and the O+ and H+ ions attains a maximum, resulting
in a minimum in the growth rate, as can be seen in Fig. 4.
Figure 5 shows the influence of TO+ /Te on the growth rate of
the fastest growing LHD modes for kyL=2.0 and nO+ /ne

=0.65. The variation in the growth rate with TO+ /Te for both
the odd- and even-parity modes has nearly the same ten-
dency: it first decreases rapidly until TO+ /Te=2.3, then it
increases slowly. The existence of a minimum can be physi-
cally expected since when the O+ ions dominate the plasma
sheet, they are mainly responsible for the wave-particle en-
ergy transfer. Accordingly, as the O+ temperature increases,
Landau damping due to the O+ ions also increases until a
peak is reached, corresponding to the minimum in the
growth rate, as seen in Fig. 5.

FIG. 2. Real and imaginary parts of the frequencies of the
modes shown in Fig. 1. vs the mode number m, for nO+ /ne=0.1,
TO+ =Te, and kyL=2.0.

FIG. 3. The eigenfunctions � and A� of the LHDI mode for
nO+ /ne=0.1, TO+ =Te, and kyL=2.0.

FIG. 4. The growth rate of the fastest growing LHD modes as a
function of nO+ /ne for TO+ =Te and kyL=2.0. Solid lines denote the
odd-parity modes and dashed lines the even-parity modes.

FIG. 5. The growth rate of the fastest growing LHD modes as a
function of TO+ /Te for nO+ /ne=0.65 and kyL=2.0. Solid lines de-
note the odd-parity modes and dashed lines the even-parity modes.
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V. DISCUSSION

Using Vlasov theory, we have studied the effect of O+

ions on the LHDI with intermediate-wavelength ky
��i�e�1,

such that the LHD mode has a significant electromagnetic
component that might affect the onset of magnetic reconnec-
tion �18�. Our results show that there exists multiple harmon-
ics of unstable eigenmodes with both even and odd parity.
The growth rate of the fastest growing mode is not mono-
tonic with the O+ �heaviest species� content and temperature.
In a sense, this result is in contrast with earlier studies of the
effect of particle mass and temperature ratios in two-species
plasmas, which showed that the growth rates of the magnetic
instabilities decrease monotonically with the ion-to-electron
mass and temperature ratios �28,33�. In a plasma with O+

ions, the competitive interactions between the waves and the
O+ and H+ ions can lead to a nonmonotonic variation in the
growth rate with the O+ content and temperature. This is

because the total energy transfer between the O+ and H+ ions
and the waves depends on the concentration of these ions. In
fact, it is found that there can exist a minimum in the net
growth rate for certain O+ content. On the other hand, as TO+

increases, the O+-ion Landau damping will attain a maxi-
mum before it decreases with further increase in TO+. Thus,
the growth rate can also have minimum with respect to TO+.
Since the LHDI in the three-species plasma can have much
larger growth rates than that in a two-component plasma, it
can be responsible for the occurrence of magnetic reconnec-
tion in the Harris sheet, especially when the O+ content is
significant.
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